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Incompressible flow in closed
conduits
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Passive elements vs. pumps
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The hydraulic energy balance
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Graphical solution for the

From this, we can express the
delivery height of the pump:
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Looped networks

+ Favorable in the cases of
large supply networks (e?.
A in communal water supply
| systems).
| ! + Water flow never stops in
< the conduits.
i + Large local consumptions
are tolerated. (Usually less
J/ pressure drop is caused.)
* When one conduit must be
closed (eg. for
maintenance) the rest of
the supply network stays
operational.

Kirchoff laws

NG 4 I)  The mass balance must be
Do fulfilled in every nod.
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4
o 4p, II.) The sum of pressure drops
must be zero for each loop.
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Tree topology

Tree topology can always be converted into looped topology:
The nodes representing the external space are of identical pressure and must
fulfill the continuity too, thus can be regarded as one single node.

E.g. the topology of an air extraction network:

The looped topology is more general than the tree topology.

Network elements

q; represent a supply, when g>0, and consumption, when g;<0.
q;-s are localized at the nodes.
q; values must fulfill: N

Zfli =0
i=1

The unknowns are the X; volume flow rates in each pipe.
+: flow direction meets the edge direction;
flow direction is in adverse direction.

Number of equations

We have only N-1 independent nodal equation, because the sum of g; values
must be 0. Eg:

qé”_ﬂ_/—o 72 X =q

How many nodes we have got?

N=1+E-L
We have E unknowns, thus: E=N-1+L
A

Number of independent
nodal equations

With the loop equations we can close the system.




The topology matrix

Nodal equations: _ i
q q; _zaiixi (i:1..N)

a; are the elements of the topology matrix.
a;;=1: if edge j leads out of node i;
a;; =-1:if edge j leads into node i;
a;=0: if edge j does not meet node i.

N
q; also must fulfill: Z q;=0
i=1

Therefore the number of independent nodal equations is N-1.
We can also extend the graph on the way to eliminate external supplies,
that is q;=0.
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Loop equations

The total loss of edge j reads: A'—Exj‘xj‘ﬁﬂﬂ“
e total pressure loss of edge j reads: p'; = 2 42 |4, i+
J J
ap' =k x|
E
The system of loop equations is: zbijp'j =0 (k:1..L)
P=

b,q» are the elements of the loop matrix:

bkj are the elements of the loop matrix.
b,q- =1: if the direction of edge j meets the direction of loop k;
b,q- =-1:if edge j is in adverse direction;

bkj= 0: if edgej is not contained by loop k.

The Cross method

An easy to implement iterative solution method for looped networks.

Set the volume flow rates on the way to fulfill the nodal equations.
Eg. we set x;=0.

Correct the flow rates of all edges within loop k by adjusting their x;
values with a g loop correction flow rate. (Correct only one loop at a

time.
This method does not violate the validity of the nodal equations.

Apply the loop corrections sequentially on each loop.
We always spoil the pressure balance of the neighboring loops at some
extents.

Repeat the corrections in cycles.




The loop correction (1)

E
The loop equations: Zbijpj =0
J=1
X; =S, only in loop k, are corected by q,. The corrected flow-rates must fulfill:

E
3 bk, (x, +b,q, ), +byq,[=0
J=1

When calculating g, we can make some approximations:

1. We can assume that the sign of X; is not changed when being corrected:
E
Dbk sg(x;)x; +bya, f =0
=

2. When g, is small, its square can be neglected:

E
zbkjkj sg(x; )(x_% + 2ijquk )= 0
j=1
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The loop correction (2)

E
zbkjkj sg(x; )(sz- +2ijquk):0
j=1

E
Z(bkjij.i‘x.i‘ + Zblgjkj‘ j‘Qk ): 0
J=1

gy is a constant value within loop k, therefore:

loopk loopk N
> bk jeslei|+ae 3 265k fxj=0
= j=1
loop k
z bkjijj‘xj‘ Than we correct the
= flow-rates:
9 =" Toopk
p k n+l _ n
| Xj = xj +hgqx

> 2b,§,.k_,.\x
J=

Homework (max.5 p)
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An extraction network is illustrated which consists of 400 mm diameter cylindrical pipes. Pressure increase of the fan is 500 Pa.
Ventilation discharges into open atmosphere.
Model the network by using CrossMethod.xls program:

Blasius-formula can be applied for calculation pipe losses straight sections;
the value of the loss coefficient s 1 in every 90° elbows;

the loss coefficientis 1 for both upstream branches in uniting junctions;
air temperature is 20°C and assume 100 kPa when calculating density.

Plot Q..Q, flow-rates on a bar-chart like this:

(The chart need to be completed with scales.)

E-mail me your spreadshww to:

kristof @ara.bme.hu I I [




Newton-Raphson method with
direct solution

Independent loop corrections do not give a convergent solution in complex cases,

so we need to solve the linear system directly for the whole flow rate correction

vector.

The flow rate of the jt" conduit is updated by taking into account g,,, values of every

loop:
. L

n+l _ on
X, =x;+ me/'qm

m=1

With this assumption, the loop-equation for the k" loop reeds:

J=l

i[bk/.ij;f‘x?‘ + Zbk/.k/.‘xﬂib,,,/qmj =0

This formulates a system of L (k:1..L) equations for the unknown q,,, (m:1..L) values
can be solved by any direct solution method, e.g. by Gauss-Jordan method.
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Wave propagation in long liquid
product pipelines (1)

Due to the pressure jump dp, ES I E ST s F T FETS
the pipe expands by dA.
a=dv, a
- H -—
+d,
A+dA /;+d1/9) P, p, A
FFFFFFFAF I I TTTTT,
Continuity:
(a—dv)p+dp)A+dA)=apA apdA+adpA—dvpA=0

Momentum theorem:
Apa(a —(a—av))=(A+dA)(p+dp)-Ap — Pyait 4A

wer

Term R is the pressure force acting on the pipe wall. R

Pwall = P thus the Allievi theorem holds: padv=dp

Wave propagation in long liquid
product pipelines (2)

dv dA dp
apdA+adpA-dvpA=0 —p — =4
a A p
v _ dp
padv=dp —_ P pa2
dp dA dp
2:7+7
pa- A p
2 1
a=—
pdA dp

Adp dp




Wave propagation in long liquid
product pipelines (3)

D
(Hook’s law) o=E ¢ o=E.
p
RN 4 dpD_, dD_E,dA —dp=—E,%
\/ 2s "D 2 A
pdA  p D dp_p
Adp E, s dp E,
o 1 _ 1 _ E inn“\)/g:jﬁjhs:l_‘?, is the reduced
A s S N B
”‘ ! E, E E,s

Note that, also the bubbly gas content can cause significant reduction to E,.
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Problem #8.1

A) Compare the wave celerity in still water with those in a pipeline of given
geometrical parameters:

Pipe diameter: 500 mm,
Wall thickness: 10 mm,
Eyaer: 2.0 x 109 Pa,
Egea: 2.1 x 10" Pa.

B) For which value of s/D ratio is the difference in sound speeds equal to 5%
of the sound speed in clear water?

To the solution

Unsteady flow in liquid product
pipelines

Continuity equation for constant nominal cross-section pipes:
dp 0
%2 (pv)=0
ot ox

The equation of motion:

v v 19
o Py
ot ox pox

f denotes the force on unit mass of fluid due to wall friction:

14
=

for turbulent flow, we can state:
A

Ap’:fgv‘v‘%ﬂ , thus f=—5vv‘




Pipe friction coefficient for unsteady
flows

For periodical flows of sinusoidal time dependence A can be specified as a
function of Reand St=fD/v.

When the pressure gradient changes direction:
>
—) é —)

Unsteady A values are usually greater than the steady values due to the
continuous refreshment of the boundary layer.
For laminar flow even an analytical solution can be found in the literature.

For turbulent flows A can be identified on the basis of resonance experiments
carried out in closed pipes. According to our own measurements, A fell in the
range of 0.02-0.04 (for some experiments in the ranges of Re:104-10% and
St:0.005-0.02).
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PDE for p(t,x) and v(t,x)

s
apS:COHS[.
dp  0dp odv
—+p—=0
o Var P
1 dpodp v dpdpg ov
o o T 5ot =
a’dp ot a*dpox  ox
1
PP 2%
ot ox ox Now, every
P ap tPerr/nisin
av o ___ op als.
paa +p vax aax+paf

Acoustical assumptions

CIIRE L

Vot
o Vo P %
dv dv_ dp
paat+pavax— aax+paf
1) we assume: pP=py and a=aqg
ap 2[ dpoagy
it ol =0
at+v x+a0 ox
8p0a0v+vap0 V=—aoal+P0a0f
ot X ox

2) we assume: v <<aq

Since  pPpayv must be of the same order of magnitude as p .




Characteristic variables
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Method of characteristics

Let's calculate pz and vs,
from given p;,v; and p,,v,!

o = pit Podovy

B> = 2= Poagvy

a3 =0y v|v|ar

X
t
By = B+ volvy| At
t time marching a3+ ,33
p3=—7,-""
2
-5

At | S L N \ 3 2/)040

Ax Ax Ax Ax X Here, we need boundary
conditions.




Boundary conditions

afﬁ
Deadend: V= =0 = a=p
— 2 podg
|G a+p , -
= Outflow: Po = ) a=2py-f
—
Po
| N
-) Inflow: p+&v2 =Py
— 2 \
2
a+ﬁ+& a-p _
2 2 \ 2 pyay
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Junction

By neglecting the head losses
we have got the following relations:

VIA + vy Ay + 343 =0

P=D2
P2=D3

We have got 3 incoming characteristic variables from the 3 pipes.
By using the above 3 algebraic relations we can determine
the 3 unknown (outgoing) characteristics.

Problem #8.2

We suddenly open one end of an evacuated pipe.

What will be the pressure and inflow velocity immediately after the opening?
Please, use the method of characteristics and calculate o, p quantities!
Define the initial state of the pipe on the basis of v=0, p=const. conditions.

Pressure in the closed pipe: 50 kPa,
External pressure: 100 kPa,
Air density: 1.2 kg/m3,
Sound speed: 334 m/s.

To the solution
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Application examples
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Vs No-return valve

hy Po

Pump
~ Open channel

Pressure
3 bar, : . :

b

f PR

time [s]

Pt

Example 1: hydraulic shocks due to valve closing

] ) __ 3600

o
90°

oc;
— ¥

tht t3

Velocity
Optimum settings:

t-4=0.5s
t3-t,=45s

time [s] LA

pipe

time

Example 2: Ethylene polymerization

Operating pressure ~ 2700 bar.
Pipe stresses caused by the pressure fluctuations and

L'nlu

by the mechanical vibrations need to be analyzed.

Reactors

S
(723
(%3
<
o
£
Q
1<
g
> Vibration signal
T —
\
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"
\__—

©
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Boundary conditions: the compressor

Compressor discharge (Velocity at the pipe inlet)

20 T T T T T
B e = )
A R N A U
6 i | 1 | I
wr- -t -+t -—-—A4- - =~ - =
o R S Rk A .
Vioor-F-a--%----r---a----r-——1
m/s] ¢ - -4 -4 —1- - - - b -
| | | | |
L8 I O Y I
l P e e T e e B |
| I | ] I
. [
a— Adp 1 | | |
V= B o=l f = 1A - i i i
2 poay = I I I | |
1.3 L 1.35 1.4 1.45 1.5 1.55 1.6
Vibration pulse  Time [s]

Phase angles of the linear (A¢;) and the sinusoidal (A¢,) parts are set on the basis of
geometrical assumptions.
The phase angle was obtained from the vibration signal caused by the valve opening.
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Boundary conditions: the reactor

Reactor

Intensive dissipation due to the
polymerization process.
Treated as a non-reflective BC:

a constant Svalue is assumed.

Simulation results vs.
on site measurements

Pressure fluctuations [Pa] in quasi-periodic state
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