Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurement, by Stewart Glegg and William Devenport, Academic Press, 2017.

List of corrections

Chapter	Page	Correction
2	22	Equation at bottom of page should read $H-H_{o}=-\partial \phi / \partial t \equiv H^{\prime}$
	23	Equation 2.5.8 numerator in last term should be μ not v
	27	Equation 2.6.11 v. \mathbf{n} should be v. $\mathbf{n}^{(0)}$
	41	Equation 2.7.29 should be $\zeta=\frac{1}{2}\left(z+\sqrt{z^{2}-a^{2}}\right)$
	44	Inequality in the last sentence, first paragraph should read $R>a / 2$
4	75	Equation 4.1.4 $T_{i j}$ should be $\rho v_{i} v_{j}-\left[\left(p-p_{\infty}\right)-\left(\rho-\rho_{\infty}\right) c_{\infty}^{2}\right] \delta_{i j}-\sigma_{i j}$
	77	Last term on RHS of Equation 4.2.4 should be $w_{i} w_{j}$ not $w_{j} w_{j}$
	81	Equation 4.3.10 should be $G_{o}(\boldsymbol{x}, t \mid \boldsymbol{y}, \tau)=\frac{\delta\left(t-\tau-\|\boldsymbol{x}-\boldsymbol{y}\| / c_{\infty}\right)}{4 \pi\|\boldsymbol{x}-\boldsymbol{y}\|}$
	84	Equation 4.4.9, second term on RHS should read $\left[\frac{\partial T_{i j}}{\partial \tau}\right]_{\tau=\tau^{*}}\left(\frac{\partial \tau^{*}}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\left(\frac{1}{r}\right)+\frac{\partial}{\partial x_{i}}\left(\frac{1}{r} \frac{\partial \tau^{*}}{\partial x_{j}}\right)\right)$
	85	Equation 4.4.12 should be $I_{r} \propto \frac{\rho_{\infty} U^{8} V^{2}}{(4 \pi\|x\|)^{2} c_{\infty}^{5} L^{4}}\left(\frac{x_{i} x_{j}}{\|x\|^{2}}\right)^{2}$
	91	Equation 4.7.6: q on RHS should be a function \mathbf{y} not \mathbf{x}, i.e. $q(\mathbf{y}, t)$
	92	Second paragraph: missing superscript (o), $\left\|\boldsymbol{k}^{(o)}\right\|=\omega / c_{\infty}$ and two lines below "less than" sign should be $\|\boldsymbol{k}\| \leq \omega / c_{\infty}$
8	173	The horizontal axes in Fig. 8.3A and 8.3B should be labelled t and τ, respectively
9	204	Paragraph after eqn. 9.2.9, first instance of "the incremental increase in" should be deleted
9	216	Equations 9.2.31, 32 and 33, C_{1} should be replaced with C_{2}
10	254	Line 23 should begin $\omega v / u_{\tau}^{2}=1$
	256	L^{\prime} in Fig. 10.34 should be $L_{\text {eff }}$
11	281	Equation 11.4.7 should read $\left\langle\tilde{a}_{m}\right\rangle=\frac{\Delta t}{2 \pi} D F T^{*}\left(a_{n}, m\right)$ RHS of equation 11.4.9 should read $\frac{2 \pi}{\Delta t} \operatorname{IDFT}\left(\left\langle\tilde{a}_{m}\right\rangle^{*}, n\right)$
	283	The factor $1 / 2 \pi$ in line 14 should be $T_{o} / 2 \pi$
	285	Equation 11.5 .4 is missing and should be inserted as, $\begin{gathered} \tilde{c}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} a(\tau) \int_{-\infty}^{\infty} b\left(t^{\prime}\right) e^{i \omega\left(t^{\prime}+\tau\right)} d t^{\prime} d \tau=\frac{1}{2 \pi} \int_{-\infty}^{\infty} a(\tau) e^{i \omega \tau} d \tau \int_{-\infty}^{\infty} b\left(t^{\prime}\right) e^{i \omega t^{\prime}} d t^{\prime} \\ =2 \pi \tilde{a}(\omega) \tilde{b}(\omega) \end{gathered}$
	290	Equation after first paragraph: integral should be multiplied by $1 / T_{o}$
12	303	Equation 12.1.6 should be $\phi_{m}=k\left((m-1) \Delta x-\frac{1}{2} L\right) \sin \theta_{s}$
14	354	First term of exponent on RHS of equation 14.1.1 should be multiplied by i

355	Equation 14.2.1 should appear as $\tilde{p}(\mathbf{x}, \omega) \approx-\frac{i \pi \omega x_{2} e^{i k_{o} r_{e}-i k_{o} M x_{1}}}{c_{\infty} r_{e}^{2}} \Delta \tilde{\tilde{p}}\left(k_{1}^{(o)}, k_{3}^{(o)}, \omega\right) \quad$ where $k_{1}^{(o)}=k_{o}\left(\frac{x_{1}}{r_{e}}-M\right)$ and $k_{3}^{(o)}=\frac{k_{o} x_{3} \beta^{2}}{r_{e}}$	
362	388	Equation 14.4.1 should appear as two separate expressions: $\widetilde{\mathbf{u}}(\mathbf{k})=i \mathbf{k} \times \widetilde{\mathbf{\omega}}(\mathbf{k}) /\|\mathbf{k}\|^{2}$ where $\widetilde{\mathbf{\omega}}(\mathbf{k})=\frac{1}{(2 \pi)^{3}} \int_{V} \omega(\mathbf{y}) e^{-i \mathbf{k} \cdot \mathbf{y}} d V$ Equation 15.4.16, exponent should be positive Below equation 15.4.17, k_{1} and k_{3} should have negative signs in the definition of $\boldsymbol{\kappa}$
390	Two lines after equation 15.4.19 the inequalities should read $\left\|k_{1}\right\| \ll\|k\|$ and $\left\|k_{3}\right\| \ll\|k\|$, and the end of this sentence should read "indistinguishable from the negative of k_{1} and $k_{3}{ }^{\prime \prime}$	
The first expression in the line below equation 15.4.24 should be $\kappa_{i} \approx-k_{i}$		
Just above equation 15.4.30 the equality should read $\mathbf{\kappa}=-\mathbf{k}$		
The right hand side of equation 15.4.30 should be positive		

