Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurement, by Stewart Glegg and William Devenport, Academic Press, 2017.

List of corrections

Chapter	Page	Correction
2	22	Equation at bottom of page should read $H - H_o = -\partial \phi / \partial t \equiv H'$
	23	Equation 2.5.8 numerator in last term should be μ not $ u$
	27	Equation 2.6.11 v. n should be v. $\mathbf{n}^{(o)}$
	41	Equation 2.7.29 should be $\zeta = \frac{1}{2}(z + \sqrt{z^2 - a^2})$
	44	Inequality in the last sentence, first paragraph should read $R > a/2$
4	75	Equation 4.1.4 T_{ij} should be $\rho v_i v_j - [(p-p_{\infty}) - (ho - ho_{\infty}) c_{\infty}^2] \delta_{ij} - \sigma_{ij}$
	77	Last term on RHS of Equation 4.2.4 should be $w_i w_j$ not $w_j w_j$
	81	Equation 4.3.10 should be $G_o(\mathbf{x}, t \mathbf{y}, \tau) = \frac{\delta(t - \tau - \mathbf{x} - \mathbf{y} /c_{\infty})}{4\pi \mathbf{x} - \mathbf{y} }$
	84	Equation 4.4.9, second term on RHS should read
		$\left[\frac{\partial T_{ij}}{\partial \tau}\right]_{\tau=\tau^*} \left(\frac{\partial \tau^*}{\partial x_i} \frac{\partial}{\partial x_j} \left(\frac{1}{r}\right) + \frac{\partial}{\partial x_i} \left(\frac{1}{r} \frac{\partial \tau^*}{\partial x_j}\right)\right)$
	85	Equation 4.4.12 should be $I_r \propto \frac{\rho_{\infty} U^8 V^2}{(4\pi \mathbf{x})^2 c_{\infty}^5 L^4} \left(\frac{x_i x_j}{ \mathbf{x} ^2}\right)^2$
	91	Equation 4.7.6: q on RHS should be a function y not x , i.e. $q(\mathbf{y}, t)$
	92	Second paragraph: missing superscript (o), $\left {m k}^{(o)} \right = \omega / c_{\infty}$ and two lines
		below "less than" sign should be $ {m k} \le \omega/c_\infty$
8	173	The horizontal axes in Fig. 8.3A and 8.3B should be labelled t and τ , respectively
9	204	Paragraph after eqn. 9.2.9, first instance of "the incremental increase in" should be deleted
9	216	Equations 9.2.31, 32 and 33, C_1 should be replaced with C_2
10	254	Line 23 should begin $\omega v / u_{ au}^2 = 1$
	256	L' in Fig. 10.34 should be L_{eff}
11	281	Equation 11.4.7 should read $\langle \tilde{a}_m \rangle = \frac{\Delta t}{2\pi} DFT^*(a_n, m)$
		RHS of equation 11.4.9 should read $\frac{2\pi}{\Delta t}IDFT(\langle \tilde{a}_m \rangle^*, n)$
	283	The factor $1/2\pi$ in line 14 should be $T_o/2\pi$
	285	Equation 11.5.4 is missing and should be inserted as,
		$\tilde{c}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{-\infty} a(\tau) \int_{-\infty}^{\infty} b(t') e^{i\omega(t'+\tau)} dt' d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} a(\tau) e^{i\omega\tau} d\tau \int_{-\infty}^{\infty} b(t') e^{i\omega t'} dt'$
	290	Equation after first paragraph: integral should be multiplied by $1/T_o$
12	303	Equation 12.1.6 should be $\phi_m = k \left((m-1)\Delta x - \frac{1}{2}L \right) \sin \theta_s$
14	354	First term of exponent on RHS of equation 14.1.1 should be multiplied by <i>i</i>

Chapter	Page	Correction
	355	Equation 14.2.1 should appear as
		$\tilde{p}(\mathbf{x},\omega) \approx -\frac{i\pi\omega x_2 e^{ik_0 r_e - ik_0 M x_1}}{c_{\infty} r_e^2} \Delta \tilde{\tilde{p}}(k_1^{(o)}, k_3^{(o)}, \omega) \text{where}$
		$k_1^{(o)} = k_o \left(\frac{x_1}{r_e} - M\right)$ and $k_3^{(o)} = \frac{k_o x_3 \beta^2}{r_e}$
	362	Equation 14.4.1 should appear as two separate expressions:
		$\widetilde{\widetilde{\mathbf{u}}}(\mathbf{k}) = i\mathbf{k} \times \widetilde{\widetilde{\mathbf{\omega}}}(\mathbf{k})/ \mathbf{k} ^2$ where $\widetilde{\widetilde{\mathbf{\omega}}}(\mathbf{k}) = \frac{1}{(2\pi)^3} \int_V \mathbf{\omega}(\mathbf{y}) e^{-i\mathbf{k}\cdot\mathbf{y}} dV$
15	388	Equation 15.4.16, exponent should be positive
		Below equation 15.4.17, k_1 and k_3 should have negative signs in the
		definition of $m{\kappa}$
		Two lines after equation 15.4.19 the inequalities should read $ k_1 \ll k $ and
		$ k_3 \ll k $, and the end of this sentence should read "indistinguishable from the negative of k_1 and k_3 "
	390	The first expression in the line below equation 15.4.24 should be $\kappa_ipprox -k_i$
	392	Just above equation 15.4.30 the equality should read $\mathbf{\kappa}=-\mathbf{k}$
		The right hand side of equation 15.4.30 should be positive