REFINED MISKAM SIMULATIONS OF
THE MOCK URBAN SETTING TEST

Márton Balczó
M.Sc., corresponding author, assistant research fellow
Department of Fluid Mechanics,
Budapest University of Technology and Economics,
Budapest, Hungary

Joachim Eichhorn
Ph.D., research associate
Institute for Atmospheric Physics,
Johannes Gutenberg University, Mainz, Germany

XXIII. microCAD International Scientific Conference | Miskolc, March 19-20, 2009
CONTENTS

• An introduction to the COST Action 732
• Code applied - what’s new in MISKAM 6
• Test case description – the Mock Urban Setting Test
• Model setup
• Qualitative comparison to wind tunnel data
 • Wind field
 • Concentration field
• Results for validation metrics
• Conclusions
An introduction to the COST Action 732

• COST Action 732 “Quality Assurance and Improvement of Micro-Scale Meteorological Models”
• Dispersion models widely used - lack of validation
• Model comparison exercises with dozens of CFD and non-CFD models
 • Rigorous harmonization and documentaiton of model inputs and setup
 • Exploratory result analysis and validation using metrics
• Action output:
 • Model Evaluation Guidance
 • Best Practise Guideline for urban CFD
 • Validation datasets and results

Code applied - what’s new in MISKAM 6

- MISKAM: flow and dispersion model for urban environment
- RANS with k-ɛ turbulence closure, modified as suggested by Kato & Launder (1993) and Lopez (2002), gradient dispersion
- simple numerical procedures, easy grid generation, runs on PC
- Used in environmental assessment etc. ~100 users in Europe

New schemes in MISKAM 6 optional to the upstream scheme:
- predictor corrector advection scheme (MacCormack, 1969) for momentum transport
- use of corrected upstream scheme (MPDATA, Smolarkiewicz, 1989) for transport of scalars (k, ɛ)
The Mock Urban Setting Test (MUST)

• Mock Urban Setting Test – fullscale measurement in Utah desert, 120 containers, flow and dispersion measurements

• Wind tunnel tests (University of Hamburg) - controllable environment (bound. cond.), measurements in ~ 3700 points
MISKAM model setup - refinements

<table>
<thead>
<tr>
<th>No.</th>
<th>version</th>
<th>grid</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.01</td>
<td>coarse</td>
<td>1m resolution</td>
</tr>
<tr>
<td>2</td>
<td>5.01</td>
<td>fine</td>
<td>0.5m resolution</td>
</tr>
<tr>
<td>3</td>
<td>6 b3</td>
<td>fine</td>
<td>0.5m resolution</td>
</tr>
<tr>
<td>4</td>
<td>6 b3</td>
<td>refined</td>
<td>0.25m resolution</td>
</tr>
<tr>
<td>5</td>
<td>6 b3</td>
<td>fine</td>
<td>modified inlet TKE</td>
</tr>
<tr>
<td>6</td>
<td>6 b3</td>
<td>refined</td>
<td>modified inlet TKE, 0.25m resolution</td>
</tr>
</tbody>
</table>

- Coarse, medium and fine grids showed grid dependency

 ⇒ **refined grid**

- Good agreement of inlet wind profiles, but computed TKE too low

 ⇒ **modified profile**
Wind field analysis

1700 data points (LDA)
Example: a typical vertical profile of velocity

• Moderate improvement in U compared to 5.02
• Problem still in W
Concentration field analysis

- Measurement (interpolated): plume direction differs from mean flow dir.
Concentration field analysis

- MISKAM 5.01
Concentration field analysis

• MISKAM 6 b3:

-45 deg | concentration [-] at 1.28m

MISKAM
Wind Tunnel (interpolated)
Concentration field analysis

• MISKAM 6 b3 with modified TKE profile: shorter plume
Validation metrics

- **Hit rate**: \(O \) – observation \(M \) - model result

- We have a hit, if: \(|M_i - O_i| \leq W\) or: \(\left|\frac{M_i - O_i}{O_i}\right| \leq D\)

 allowed absolute deviation: \(W \) (e.g. measurement error)

 allowed relative deviation: \(D \) (+/-25%)

- Hit rate above 66% proposed as acceptance criterion

<table>
<thead>
<tr>
<th>V.</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.02</td>
</tr>
<tr>
<td>2</td>
<td>5.02</td>
</tr>
<tr>
<td>3</td>
<td>6 b3</td>
</tr>
<tr>
<td>4</td>
<td>6 b3</td>
</tr>
<tr>
<td>5</td>
<td>6 b3</td>
</tr>
<tr>
<td>6</td>
<td>6 b3</td>
</tr>
</tbody>
</table>
Validation metrics

For non-negative scalars (concentration) further metrics used in COST 732:

- Normalized mean square error (NMSE), fractional bias (FB), geometric mean bias (MG) and geometric variance (VG)
- Acceptance criteria defined

Conclusions

- New schemes ⇒ significant improvements in results
- Main flow features resolved well
 (channeling effect, plume direction)
- Smaller structures around containers not resolved
 (separation regions)
- Concentration field although acceptable
 (metrics slightly above limit)
- Recommendations for MISKAM users:
 - fine grid and proper choice of boundary conditions is essential
 - concentration near the source overpredicted
Thank you for your attention!

COST 732 homepage
http://www.mi.uni-hamburg.de/Home.484.0.html